CE-Marking of timber poles - proposal

DOP-Nummer (Number der Hersteller-Leistungserklärung/
DOP-number (number of Declaration of Performance)

Name des Lieferanten/
Suppliers name

Lieferantenlogo/
Suppliers logo

XY GmbH

DOP 1/2017

CE 1234

1234-CPR-5678F

EN 14229:2010

X-YZ

PS 2016 ACO (K5-M)

Holzart, Jahr der Imprägnierung,
Kurzzeichen des Holzschutzmittels
(Produktnamen)/

Wood species, year of impregnation,
abbreviation of wood preservative (product name)

Kurzzeichen des Imprägnierers/
Abbreviation of impregnation company

Bezugsnorm u. Ausgabe/
Reference standard and edition

EG-Konformitätszertifikat/
EG-certificate of conformity

CE—Zeichen und FPC-Zertifizierungsstelle/
CE-mark and FPC-certification body.
Advantages of timber sleepers
SGH-Leaflet - Overview -

Wood as raw material
- Natural, renewable material (beech, oak, pine)
- Climate friendly due to CO₂-neutrality
- Origin in sustainably operated European forests - therefore, protection of threatened tropical forests
- Very long service life due to professional vacuum pressure impregnation
- Use of protective agents with significantly improved environmental characteristics (less exudation and less odor generation) - e.g. W.E.T. type C

Application areas
- In normal rail track systems
- In railway station areas
- In switching operations
- In train assembly systems
- For harbor and industrial trains, etc.
- For special application areas such as for tight curve radii, on bridges, in tunnels, on mountain routes, etc.
- For switches
- Subways and S-Trains
- For high axle loads

Wood and technology
- Low weight/easy handling
- Lowered requirements for the height of the ballast bed
- High elasticity in the rail due to very good transverse offset resistance
- No conductivity in comparison to other materials
- Resistance against breaking loads in case of derailments (e.g. switching operation)
- Outstanding noise and tremor damping characteristics
- Matures, safe and durable technology
- Development potential for improvements is available

Disposal
- Reuse in lower ranking rail tracks is possible
- Environmentally compatible disposal of the old sleepers through CO₂-neutral energetic use (fuel and electricity generation)

Costs
- Improved overall costs due to favorable secondary materials use and commercialization
- Cost effective compared to many alternative solutions
- Low costs for maintenance works and possible exchanges
- Low transport costs due to lower weight

Key words:
Wood as raw material, application areas, wood sleeper and technology, disposal, costs
Advantages of the wooden Sleeper

Wood as raw material

- Natural, renewable material (beech, oak, pine)
- Climate friendly due to CO2-neutrality
- Origin in sustainably operated European forests - therefore, protection of threatened tropic forests
- Very long service life due to professional vacuum pressure impregnation
- Use of protective agents with significantly improved environmental characteristics (less exudation and less odor generation) - e.g. W.E.I. type C
Advantages of timber sleepers (3)

Application areas

- In normal rail track systems
- In railway station areas
- In switching operations
- In train assembly systems
- For harbor and industrial trains, etc.
- For special application areas such as for tight curve radii, on bridges, in tunnels, on mountain routes, etc.
- For switches
- Subways and S-Trains
- For high axle loads
Advantages of timber sleepers (4)

Wood and technology

- Low weight/easy handling
- Lowered requirements for the height of the ballast bed
- High elasticity in the rail due to very good transverse offset resistance
- No conductivity in comparison to other materials
- Resistance against breaking loads in case of derailments (e.g. switching operation)
- Outstanding noise and tremor damping characteristics
- Mature, safe and durable technology
- Development potential for improvements is available
Advantages of timber sleepers (5)

Disposal

- Reuse in lower ranking rail tracks is possible
- Environmentally compatible disposal of the old sleepers through CO₂-neutral energetic use (heat and electricity generation)

Costs

- Improved overall costs due to favorable secondary materials use and commercialization
- Cost effective compared to many alternative solutions
- Low costs for maintenance works and possible exchanges
- Low transport costs due to lower weight